
Journal of Structural Geology, Vol. 9, No. 8, pp. 1047 to 1049, 1987 0191-8141/87 $03.00 + 0.00 
Printed in Great Britain © 1987 Pergamon Journals Ltd. 

Brevia 

SHORT NOTE 

Variable-heave models of deformation above listric normal faults: 
the importance of area conservation 

JOHN WHEELER 

Midland Valley Exploration Limited, 14 Park Circus, Glasgow G3 6AX, U.K. 

(Received 5 February 1987; accepted in revised form 15 July 1987) 

Abstract--In recent years work on extensional fault-controlled structures has illustrated the relevance of spatial 
heave variations along faults in producing structures such as hangingwall synclines. In this note I mention two 
models which have been described: in one, the fault heave varies and vertical marker lines remain vertical (the 
'modified Chevron model'), whilst in the other, markers perpendicular to the fault remain perpendicular during 
movement (the 'slip-line model'). I show that both these models produce large area changes and cannot be used 
quantitatively unless these spurious effects are removed. I give here the derivation of models which satisfy the 
same general criteria but conserve area. Some aspects of the amended models are detailed. Both the modified 
Chevron model and slip-line model predict strains which increase without limit away from the fauR plane, and in 
the slip-line model infinite strains may be predicted in geologically reasonable scenarios. 

INTRODUCTION 

INTEREST in the effects of deformation above listric 
normal faults was stimulated by the constant-heave 
model presented by Verrall (1981). Since then various 
new models for hangingwall deformation above exten- 
sional faults have been derived (e.g. Coward & Gibbs 
1986, Williams & Vann 1987). These models attempt to 
include the effects of varying displacement along faults 
and are thus a generalization of the constant-heave 
(vertical simple shear) model. The models are used to 
generate structures similar to those sometimes imaged 
on seismic sections, such as hangingwall synclines above 
gently curving faults. 

One of these new models (the 'modified Chevron' of 
Williams & Vann 1987) allows heave along a fault to vary 
while preserving the heights and orientation of vertical 
lines in the hangingwall. The other model discussed by 
these authors (the 'slip-line model') specifies that lines 
perpendicular to the fault remain perpendicular, and 
retain their lengths, as they move down the fault. The 
purpose of this paper is to show that these two models 
produce gross area increases and decreases during 
hangingwall deformation and therefore in their given 
form are of qualitative use only. In this discussion I 
derive amended versions of the models, in which area is 
locally conserved whilst still allowing heave to vary. I 
then state some limitations to the two models which 
should be borne in mind whenever they are used. 

VARIABLE-HEAVE MODEL 

In this model vertical lines remain vertical, but may 
move together or apart, as the hangingwall moves over a 

fault surface. These vertical lines retain their height 
during the deformation. However, if such lines change 
their relative spacing then the area of the slab of rock 
which they bound will increase or decrease. This is a 
spurious effect of the Williams & Vann (1987) model. In 
reality the changing separation of vertical lines will be 
accompanied by changing height; thus if the heave 
gradient doubles the spacing of vertical lines, it follows 
that their heights should be reduced by 50%. In a 
feasible model, let X represent the x co-ordinate of a 
vertical marker line before deformation and let x be its 
final position 

h = x - X .  

If the heave (h) changes, then the spacing of vertical 
lines changes from S to s (Fig. 1) according to 

s / S  = d x / d X  = 1 + d h / d X .  

Thus if the heave decreases with X, the hangingwall 
shortens and s / S  < 1. To conserve area everywhere in 
the hangingwall, let Z and z be the initial and final 
heights of a given column of rock. Then 

s z  = S Z  

SO 

Z 
z = 1 + dh/dX" (1) 

To illustrate this, consider a buried extensional fault 
tip (Fig. 1) at which the heave h = 0 and suppose the 
heave has value h = 1 at X = 1 (so x = 2). Then, the 
simplest hypothesis is that the strain is homogeneous in 
the extended zone. The strained zone must be bounded 
by vertical faults (Fig. 1). Such vertical faults will always 
appear in the modified Chevron model, bounding zones 
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Fig. 1. Simple model of a buried extensional fault tip. S and s are initial 
and final spacing of notional vertical lines; Z and z are initial and final 
heights of rock columns. Dot marks fault tip, to left of which there is 

no slip. 

in the hangingwall with differing heave gradients. More 
realistically the heave gradient d h / d X  should itself be a 
continuous function of X, in which case vertical faults 
are not necessary. In the above example we may put 
d h / d X  = 0 at either end of the extended zone. As an 
example, a simple function satisfying these criteria is a 
trigonometric function 

SO 

and 

d h / d X  = 1 - cos (2atX) 

Z 
Z = 

2 - cos (2,TtX) 

h = X - (l/2ar) sin (2arX). (2) 

The result of this is shown in Fig. 2. The important 
implications of this model are that in addition to the 
depth increase due to moving down an extensional fault, 
a depth increase proportional to the thickness of the 
hangingwall is imposed. These significant strains are a 
consequence of area conservation. 

SLIP-LINE MODEL 

The essence of this model is that straight lines perpen- 
dicular to the fault in the hangingwall remain straight 

FAULT 
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Fig. 2. Model of an extensional fault tip in which the heave increases 
smoothly using the function noted in equation (2). Area is conserved, 
and shear strains on the limbs of the hangingwall syncline increase 

upwards away from the fault. 

Fig. 3. The slip-line model of Williams & Vann (1987). Area is not 
conserved if segments of rock move over arcs of fault of different radii. 

and perpendicular as they move down the fault. How- 
ever, as Fig. 3 shows, if the lines remain fixed in length 
then area is not conserved. As in the modified Chevron 
construction, we may allow local area conselvation if 
lines change in length. Consider a thin wedge-shaped 
portion of hangingwall (Fig. 4). Suppose a point is at a 
distance t from the fault where the fault's radius is R. 
Then the area between this point and the fault is 

6 A  = ½ l  2 6 0  - ½(R - 0 2 6 0  

-- f i R  - ½(R - t)E/R] 61 = (t  - tE/2R) 61, 

where 61 is the (fixed) length of a line adjacent and 
parallel to the fault. If 6A and 61 are fixed then t is 
predicted to change, as the radius of curvature of the 
fault changes according to 

K =  t -  tE/2R, 

where K is constant for a given material point. Thus t 
attains its minimum value on planar portions of the fault, 
where tp = K. We may also write 

t =  R -  ~ /R  2 -  2Rtp. 

The effect of this is to cause slip lines to converge on the 
fault plane (Fig. 5). This area-correct version of the 
slip-line model can be extended to include the fault 
slip/propagation model, in which the distance t changes 
not only due to changing fault curvature but also due to 
fault-parallel strains (6l changes). 

The important feature of this argument is that it 
illustrates that the radius of curvature of the fault must 
be large for the method to work. If any point in the 
hangingwall lies at or beyond the centre of curvature 
then infinite strains are predicted. This seriously limits 
the usefulness of this method, and it is inapplicable if the 
fault shows discontinuous dip changes and the local 
radius of curvature is zero. 

Fig. 4. Quantities used to describe hangingwall fault segments in the 
amended version of the slip-line model (see text). 
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Fig. 5. In the area-conserved slip-line model, material paths (arrowed 
lines) converge on straighter portions of the fault. Paths for material 
points lying in the stippled area (which is bounded by the local centres 
of curvature of the fault) are undefined. Points in regions marked ? will 
move into or out of the stippled region, so their complete trajectories 

are not defined. Note the large strains away from the fault surface. 

DISCUSSION 

I have presented models for deformation above faults 
which conserve area. This does not mean that area 
changes cannot occur: area decreases may occur by 
compaction, pressure solution, etc., and area increases 
by dilational brecciation. The models given by Williams 
& Vann (1987) can be used to simulate extensional faults 
whose displacement decreases downwards, in which 
case the predicted area decrease could be assigned to 
compactional effects. The following comments apply to 
this scenario. 

(a) The models could not be applied to rocks consoli- 
dated before faulting. 

(b) If compaction is to be included in modelling of 
sediment deformation, it should be treated as a process 
which may accompany faulting or may be independent 
of it (e.g. White et al. 1986). It is artificial to force a 
complete dependence of compaction on faulting, as the 
modified Chevron and slip-line models would do. 

(c) In other cases of changing fault slip (e.g. Fig. 3), 
area increases are predicted which would imply wide- 
spread and large dilational strains, for which there is 
little evidence in deformed basin sequences. 

The area-conserved versions of deformation models 
proposed here retain the useful features of the modified 
Chevron and slip-line models, whilst bringing them into 
line with others which conserve area such as the flexural- 
slip model used in thrust belts, the vertical shear (Chev- 
ron) model (Verrall 1981), and the inclined shear model 
(White et al. 1986). 

In summary, there are three features of the modified 
Chevron and slip-line models which should be 
appreciated before they are applied. 

(1) In the form presented by Williams & Vann (1987), 
they both predict area increases and decreases in the 
hangingwall. 

(2) The models can be corrected to conserve area, as 
demonstrated here. 

(3) Both models predict strains which increase inde- 
finitely away from the fault (Figs. 2 and 5). The slip-line 
model breaks down completely at distances at or beyond 
the locus of local centres of curvature of the fault surface. 
These effects limit the usefulness of the models in 
geological cross-sections. They are due partly to the 
guiding notion that slip on faults determines the defor- 
mation style in their hangingwalls, whilst in reality the 
opposite is probably true. 
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